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This paper describes the changes done to Daphne, a virtual assistant for architecting earth
observing satellite systems, to turn it from a reactive assistant that only acts when asked by the
user into a proactive assistant that can perform actions without not directly linked to a user
request, taking its own initiative. Specifically, the paper describes a new way for Daphne to
communicate with the user with Websockets that allows for a broader range of interactivity.
The new features enabled by this new communication system are: (1) an agent that searches
over the space of designs and shows interesting designs to the user; (2) an agent that tries to
encourage the user to diversify their search of the tradespace; and (3) a live recommender
system that acts when the user is modifying a certain design by suggesting changes that are
likely to improve cost and/or performance. The paper also describes changes in the existing
sub-systems as well as the interface to accommodate the new systems and interactivity. Finally,
the paper has a short discussion on how a common user case scenario would unfold with all
these new features.

I. Introduction

Architecting Earth Observing Satellites Systems (EOSS) such as the NASA Earth Observing System or ESA’s
Copernicus is a challenging task. Some strictly computational factors that explain this difficulty are: 1) The number

of possible valid designs can be extremely high –if we consider the architecture space of an EOSS to be defined by
any binary relation between a set of N instruments and a set of M orbits (and spacecraft), then there are 2NM possible
architectures, which, even for small values of N and M can give too many architectures to evaluate. 2) Each evaluation of
a system, where we define evaluation as computing some relevant attributes for it, such as various coverage metrics and
cost, can take from seconds to a few hours, depending on the accuracy of the models being used, which makes evaluating
all or even more than just a few of all possible architectures unfeasible. 3) The requirements and goals for a system can
evolve over time, which would require running the analysis multiple times under various scenarios and requirement sets.

Many organizations have their own set of tools to perform these tasks, although few have publications describing
them. Some examples of published papers describing similar tools include TAT-C [1] (in development at the NASA
Goddard Space Flight Center), VASSAR [2], iFEED [3, 4], DISCO [5] and Daphne [6], which is the object of this paper.

Daphne was conceived as a virtual assistant –also known in the literature as intelligent personal assistants or
cognitive assistants. Other modern examples of virtual assistants include commercial systems such as IBM Watson [7],
Siri, Google Assistant, Microsoft Cortana, Amazon Alexa, or Mycroft, as well as research systems such as Lucida [8],
YodaQA [9] and OAQA LiveQA [10]. Daphne, in contrast to all these systems, caters only to the systems engineer
performing high-level system design or architecting tasks: its job is to ease the cognitive load of the engineer by making
relevant information more accessible and providing feedback and recommendations on a specific design when asked.

A recent study conducted by the authors compared two roles of Daphne: a more conventional “assistant” role that
only helps by making information retrieval from various data sources easier, and a more innovative approach where
the assistant acts more as a “peer”, and gives feedback and suggestions on a design when asked by the user. The
experiment consisted in having each test subject (N = 17 undergraduate students from Cornell University) perform
the same task with two different datasets, one with Daphne as an “assistant” and one with Daphne as a “peer”. This
helps in accounting for the learning effects in the results. The results from that experiment, currently in final stages
of preparation for submission, suggest that a human aided by Daphne acting as a “peer” can find better designs
than a state-of-the-art genetic algorithm (GA) with the same number of function evaluations. Equivalently, humans
assisted by the “peer” can reach the same level of performance in the search (measured by the hypervolume of the
Pareto front) as the GA using roughly an order of magnitude fewer evaluations (a mean of 36 evaluations versus 280
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for the GA). Humans with the “assistant” Daphne did not perform as well. The reduction in number of function
evaluations becomes more important when each function evaluation takes longer to compute: if an evaluation takes
1 second, a GA can perform 1200 of them in 20 minutes, while humans need some time to think each step, making
the reduction in function evaluations futile. On the other hand, there exists a threshold value for the time to execute
one function evaluation beyond which the human-agent collaborative approach also outperforms the GA in terms of
elapsed time, thanks to the fact that humans need an order of magnitude fewer evaluations than the GA to obtain similar
results. In this study, humans evaluated around 2 architectures/minute, so an estimated value for this threshold in our
experiment would be 4s. This number comes from computing an “equivalent” number of evaluations between humans
and GA 280/36 = 7.78GA eval/human eval and then computing the time per evaluation for the GA from the time
per evaluation of a human 30s/1 human eval · 1 human eval/7.78 GA eval = 3.86s Other interesting results from
the same experiment include that usability scores (measured using the System Usability Scale (SUS) scale [11]) were
similar for the assistant and the peer roles, and that learning effects are important in the experiment, as the results
improved drastically when doing the same design task for a second time even if the data was completely different.
Finally, it is interesting to note that errors by the “peer” role (i.e., advice provided by the virtual assistant that turns out
to lead to worse designs) are penalized much more heavily in terms of user trust compared to errors by the “assistant”,
and this effect can be seen both in a trust questionnaire and the qualitative feedback given by the test subjects. This
suggests that users “expect more” of a “peer” role than they do of an “assistant” role.

The results from this experiment have motivated us to keep researching the peer role of Daphne, with the vision of
enabling a truly mixed-initiative approach [12] to design space exploration. This paper describes some of our next steps
in that direction, namely how to make Daphne take initiative and act or interject in the dialogue without the user asking
Daphne to do so.

Implementing an effective true mixed initiative is challenging, as the agent can easily be perceived as incompetent
or annoying, thus decreasing productivity and leading the user to abandon the system. This fear can be seen in most
modern assistants, as they never take the initiative over the user; they will only activate when the user calls for them.
Agents typically have a wake-up phrase, and they are expected to do nothing unless they hear that phrase. In [13], the
authors perform some interviews and conclude that users have much higher expectations of virtual assistants than what
they can actually do. Thus, they propose having the virtual assistants reveal their true capabilities and conveying the
limitations of the system when communicating with the user. Meurisch et al. [14] come to a similar conclusion, and
the proposed solution is to make virtual assistants less reactive, by what they call “anticipatory mobile computing”,
which can be summarized as having the virtual assistant consider the user goals and act proactively on them. This is a
concept that has been investigated in Human Robot Interaction (HRI) for more than a decade, and is just now coming to
the field of virtual assistants. [15, 16] They justify taking steps in this direction by saying that anticipating user goals
and having models for how the assistant actions change the user behavior can help reduce the gap in expectations. At
the same time, they recognize this is still in the very early stages of development, with such important parts as goal
detection, pro-activity, and tackling users’ fear of loss of control and mistrust still being underdeveloped. Their first
steps in developing these kind of assistants can be seen in [17]. Bernard [18], in a broad review of work on virtual
assistants, also states that there is a gap between user expectations and virtual assistant capabilities, and that the assistant
must be able to reason about user cognition to perform better. Bernard also provides some principles for designing
proactive virtual assistants: the assistant should make its intent clear to the user at all times, it should be transparent, and
act according to human understandable rules. The paper also makes a point of having a shared context between human
and machine to optimize communication.

Other studies have pointed out that more transparency is not always better. In [19], the authors perform an experiment
to check how trust in a virtual assistant changes depending on how intelligible its actions are to the user when compared
to how sure the assistant is on its results, and whether the assistant is right or wrong. The main result is that intelligibility
is only good for a virtual assistant when it is sure of what it is doing. Explaining to the user why it took a bad decision
seems to erode the user’s trust even more than just being wrong, although the authors mention this could be reversed if
the user were allowed to debug the problem.

One early example of an agent that tried to deviate from a purely reactive paradigm and failed is the Clippy assistant
from Microsoft Word, which many users disliked, prompting Microsoft to discontinue it. Whitworth [20] argues that
software needs to be “polite”, and cites Microsoft Clippy as an example of a piece of software that failed at what
he perceives as the four requirements for achieving politeness: it did not respect user choice, it did not explain why
it suggested some actions, it did not usually offer useful choices, and it was unable to remember past choices from
the users. On the other hand, modern examples of virtual assistants that most users like and which take a proactive
role are the auto-complete function of Integrated Development Environments (IDEs) or Gmail completing sentences
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(or even writing full responses) for the user. Most IDEs use the formal definition of how a programming language
is written together with static analysis tools to parse the user’s code, and this procedure ends up yielding a list of
possible completions for the name the user is typing. Some IDEs even order this list based on previous choices from
the user. Armentano [21] describes what makes this kind of agents work: most users only want to be interrupted by a
virtual assistant if that interruption is very closely related to the task they are doing, so the assistant must become good
at guessing what the user wants to do. Armentano also proposes an approach to this that involves both introducing
domain-specific knowledge in the assistant and taking into account user preferences.

We tried to follow those principles to design Daphne’s proactive functionalities, which are described in this paper.
The main new feature added to Daphne is running a Genetic Algorithm (GA) in the background, in what we have

called the “Explorer” role. Every time Daphne finds some points that improve the Pareto front, it asks the user if he/she
wants them added to the current designs dataset. The algorithm being used is the Multi-Objective GA with adaptive
operator selection described in [22].

In the same “Explorer” role, another new functionality – which we named “Diversifier” – attempts to improve
user performance during the search for new and better designs. According to Gershman’s model [23], the user can
be doing two kinds of search: local search (or hill-climbing) and global exploration. These two modes map directly
to exploitation and exploration from the well-known trade-off in global optimization [24]. Gershman [23] confirms
experimentally that a mixed approach has better outcomes than just doing either exploration or exploitation. It also
concludes that humans use this mixed approach, and one of the key drivers in choosing to do more exploration versus
exploitation is the perceived uncertainty of the rewards. On the last two human experiments performed on Daphne, we
have noticed users tend to focus on small areas for optimization, iterating over a similar design for many evaluations,
thus losing the benefits of exploration. This is probably partially due to the fact that without deep knowledge of the
problem at hand (the subjects were students), it is hard to know how a change will affect objective variables, and given
the limited time in the experiments, students tended to focus on exploitation. While some of this behavior may disappear
with longer design tasks and/or expert users (which we will test in an upcoming experiment), we hypothesize that a
feature that tries to foster diversity during the search task will lead to better results. To implement this feature, Daphne
looks at how similar the designs explored by the user are when compared to one another using crowding distance, a
well-known diversity metric used in multi-objective optimization algorithms such as NSGA-II [25]. Then, Daphne
suggests to the user to explore areas where crowding distance is large.

In addition to the new Explorer and Diversifier roles, a live recommender system has been developed. This system
works by giving real-time recommendations to the user when he/she is editing a design. These suggestions can be
gathered from multiple roles, including the Analyst, the Historian, the Engineer and the Aggregator. Each role can be
thought of as a small program that performs tasks and answers questions that are closely related. For example, the
Historian answers questions about past missions, and the Engineer is responsible for evaluating architectures. All these
roles will be described in later sections.

The rest of the paper will be organized as follows: Section II includes a short summary of the current architecture of
Daphne, the changes that have been done to add the proactive functionalities, and a detailed description on how these
new functionalities are implemented; Section III describes a use case scenario of Daphne in the context of architecting a
satellite constellation to measure Soil Moisture; finally, Section IV discusses some avenues for future work including
potential new features and experiments to validate the usefulness of these new capabilities for Daphne.

II. Updated System Overview
This section describes the changes done to Daphne to implement the proactive functionalities. First of all, a short

summary of the current architecture of Daphne is given. After that, the new features are given a thorough description,
including the changes done to the Daphne Brain, all the different roles, the new Explorer Role, and the live recommender
system.

A. Base System Overview
As described in Figure 1 Daphne is structured as a micro-services system [26]: it has a web front-end, a front-end

server (the Daphne Brain) that directs all user requests –which are either based on HTTP or on Websockets, and can be
classic requests (e.g., from a user interface button) or Natural Language through the QA System– to the appropriate role;
and a set of roles, which can be understood as software snippets, that use some of the available micro-services –be it
backends or data sources– to obtain the result the user is asking for. All backends and data sources can run independently
of one another and, in the future, will be able to run in different machines, making Daphne scale horizontally, as the
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Fig. 1 Daphne architecture - Changes to make it proactive are marked in magenta

micro-services design allows for. Most of the architecture parts not in magenta in Figure 1 (albeit with different names)
are described in detail in [6], but short summaries of all of them are provided below for completeness.

The three data sources are: 1) The Expert Knowledge Database, which contains mostly prescriptive domain-specific
knowledge about designing Earth observing satellites, in the form of if-then rules. An example of such rules is “IF there
is a visual and near infrared instrument, THEN do not put in a dawn-dusk orbit”. For more information, the reader is
referred to [27]. 2) the Design Solutions Database, which contains the current dataset of architectures and populates the
main scatter plot of Daphne. It is also used by different backends such as iFEED, VASSAR or MOEA. 3) The Historical
database, which is an SQL database with information about past and planned Earth Observation missions, obtained
from the Committee on Earth Observation Satellites (CEOS) online database. This is used to answer questions about
past missions, such as which instruments are used to measure specific parameters, or which orbits are most common for
certain types of instruments.

At the moment, there are four backends in Daphne. They are used to perform operations on the data sources, and
these processed results are then sent back to the roles. The VASSAR backend uses the methodology described in [2] to
estimate lifecycle cost and various performance-related metrics (e.g., average revisit time, ground spatial resolution)
for a given design. These metrics are then used to perform the tradespace exploration. The iFEED backend mines
the Design Solutions database to obtain features that are consistently present in desirable designs. These features are
then sent to different roles so they can be used in different ways, such as suggesting improvements to the user. The
QueryBuilder backend takes a natural language question that has been asked by a user and converts it into an SQL query
through a custom template system that is able to extract features from the natural language utterance. The same backend
is tasked with sending the information back to the QA System so it can process it into the format demanded by the user,
be it plots, text, images or lists. Finally, the MOEA (from Multi Objective Evolutionary Algorithm) backend is the
responsible for running the design space search background process that is the basis of the Explorer role.

The Daphne Brain is the key component that ties everything together: it forwards requests of any kind from the user
to the different roles. To do so, it implements two different listeners: one for HTTP requests and one for WebSockets.
Requests to the Daphne Brain can be either traditional web requests or natural language commands and queries that
go through the QA system. A new addition to it is the WebSocket Push functionality, which is the main enabler for
all the proactive actions that Daphne takes: it allows the Brain to send messages to the frontend without the frontend
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requesting them. The Brain is failure-proofed, as it can restart itself on failure and it is run in two parallel processes
to significantly decrease the probability of it failing. The QA system works by classifying the incoming requests in
different types or intents with a Neural Network and then piping that request through a series of transformations and
processing steps to end up running some kind of computation or action whose results are shown to the user.

As for the roles, there are five of them: 1) The Engineer, whose job is twofold: it is responsible for handling
all evaluations of new architectures by the user, as well as answering questions about the results it shows for these
architectures. It can give explanations on why the different objective metrics have their respective values, e.g.: “Why
does this design get this cost/science score?”. To do that, it queries the VASSAR backend. 2) The Analyst, which helps
the user understand the dataset better by providing information such as common features among desirable designs, or, in
general, among any given subset of designs (e.g., a cluster of designs obtaining similar performance). It does so by
querying the iFEED backend. 3) The Explorer, which is in charge of controlling the background search by the MOEA
backend as well as keeping track of the diversity of the designs created by the user. 4) The Historian, which maps
natural language queries to a set of database queries for the Historical Database that are preprogrammed into it, and then
answers them in the form of plots, text or lists. 5) The Aggregator, which receives a design as input, and gives out
suggestions on improvements to it as an output. These suggestions come from different roles and backends – hence the
name of Aggregator. These suggestions look at the design in different ways: from an expert perspective (using the
Engineer outputs), from an analyst perspective (using the Analyst role), from a standpoint of the search process (using
the Explorer role), and from a historical perspective (using the Historian outputs).

Finally, the interface is a web application that allows the user to show or hide all the features available in Daphne, be
it asking questions to the roles or simply using Daphne as a more traditional trade-space analysis tool.

B. Daphne Upgrades
To implement the proactive features in Daphne, a few additions have been made to the core architecture, as shown in

Figure 1. To make it easier for the reader, all new parts have been colored in magenta. This subsection will go over
these changes in detail.

1. Upgrades to the Daphne Brain
The most important change lies in the Daphne Brain. To be able to send messages to the user without the user

requesting them first, we have used an interesting feature of WebSockets: their ability to make communication between
a web server and client bidirectional. Before WebSockets came into existence, the only way to interact with a web
page was through HTTP Requests, in which the client asks for something to the server and the server answers to that
request with a response. With the advent of WebSockets, this bidirectional channel of communication used other
computing fields was made available to the World Wide Web. Most of the time, this is only used to make what is known
as long-polling requests: the user asks for something which takes a lot of computation time, and the server answers as
soon as it gets the information without blocking the application. In our case, though, we use this bidirectionality to have
the Brain send messages to the interface without any request from the user. We decided to name this process in Daphne
“WebSockets Push”, making an analogy to the Push Requests used by most smartphones. Most smartphones have a
socket connection permanently open between them and a server run by either the phone manufacturer, the OS creator, or
both. Through this open channel, apps can send messages (seen as notifications on the phone) at any point, without the
user having to go into the app and refreshing it or asking for updates. The concept in Daphne is similar - hence the name.

2. Changes to Roles
Table 1 shows a summary of all roles in Daphne, describing what their basic function is, and their capabilities in the

reactive and proactive versions of the role.
The Explorer Role, as already described, performs two tasks: background search on the design space using the

MOEA backend and tracking of the diversity of the solutions generated by the user.
To perform the background search, the Explorer starts a Genetic Algorithm in the background as soon as the user

logs into the application. The GA used for this functionality is the one described in [22]. At each iteration of the
algorithm, the offspring designs are compared against the current non-dominated set and those that improve the current
hyper-volume metric are sent to a queue of new designs, which the user can choose to see or not in the interface. By
default, these new designs are hidden from the user to avoid unwanted distractions. When the queue grows larger than a
set number (in our case, 10 designs), a notification is shown to the user to ask him/her if they want to see all the new

5



Name Function Reactive Proactive
Engineer Evaluate new architectures

Answer questions about ar-
chitecture performance and
cost

Users can evaluate architec-
tures and ask questions about
their scores

Suggestions based on rules of thumb in
the Expert Knowledge Base are intro-
duced in the Live recommender system

Analyst Feature Extraction User clicks and selects re-
gions to data mine

Tells user about desirable features
present or absent in the currently se-
lected architecture. These desirable
features are updated periodically from
the set on non-dominated architectures

Explorer Search the design space
Foster diversity in the search

N/A User can control whether or not to
see the results from both functionali-
ties, but they keep running in the back-
ground even if the user disables the
outputs

Historian Query the Historical
Database

User asks questions Suggestions based on past missions are
introduced in the Live recommender
system

Aggregator Puts together a list of poten-
tial improvements to a design

User asks how to improve the
current design

The Live recommender system is the
implementation of the Aggregator role
for proactive Daphne

Table 1 Summary table with all roles, showing differences between reactive and proactive versions

designs recently found by the background search. If the user agrees, the designs in the queue are added to the scatter
plot, and every time a new design is found, it will also be shown in real time. The user can decide to stop the background
search or stop seeing new designs at any time. Figure 2 shows a sequence diagram describing this interaction in more
detail.

x10
x10

x10

User

Worker Thread

Frontend Daphne Brain MOEA

Send notification
to show results

Start Application

Add Design To Queue
WebSockets Push

Add Design To Queue
WebSockets Push

Add Design To Queue
WebSockets Push New Design

Thread Message

New Design
Thread Message

New Design
Thread Message

New Design Found
REDIS

New Design Found
REDIS

New Design Found
REDIS

Start the GA
Thrift

Create thread

Start GA Request
WebSockets

Fig. 2 Background search interaction timeline
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As shown in Figure 2, the first request is done asynchronously through WebSockets when the user logs into Daphne,
and that triggers the creation of a thread inside the Daphne Brain which will be in charge of handling the actual
background search. One could think of that thread as the embodiment of the Explorer. That thread then creates an
instance of the MOEA backend and sends the current design set as an input. Immediately afterwards, the same thread
starts listening on a Redis (Remote Dictionary Server)∗ queue. Redis, among other things, is an in-memory data store
and a message broker. It can store volatile data accessible through keys and notify listeners of changes in that data.
In our use case, we need to be able to save designs from the background search and notify the Daphne Brain of that,
and this tool fulfills both needs. The queue where the Daphne Brain thread is listening is where the MOEA instance
will keep sending the new architectures it finds. Then, every time the thread finds an architecture, it notifies the main
thread of the Daphne Brain, which is responsible for communicating with the interface. This main thread then sends the
new architecture to the frontend using what we described as Websockets Push, where it is stored in a queue of pending
architectures until the user decides to show them on the plot.

The second task of the Explorer is fostering diversity in design space exploration. This functionality has been named
“Diversifier”. In past experiments pending publication, we noticed that users tend to focus on optimizing small regions
of the tradespace, thus missing possible ways of improving designs. Thus, the Explorer tries to incentivize the users
to try and work in new areas of the design space by keeping track of the crowding distance in all the points in the
non-dominated set. This same set is divided in 10 smaller sets by partitioning the objective space uniformly from the
minimum objective values to the maximum. This creates 10 sets which can have different numbers of designs in them.
When the maximum crowding distance on some of the groups is higher than in the others, an action is triggered. The
Explorer then sends a message through WebSockets Push to the interface suggesting to the user to start looking at one of
the subsets with the higher mean crowding distance.

3. Live Recommender System
The second significant addition to Daphne to make it more proactive has been named the Live Recommender

System. This system is tasked with showing advice to the user when he/she is in the process of creating a new design.
By default, the system generates all the possible suggestions but they are not shown to the user unless he/she activates
the visualization. If they are not being shown and a few sets of suggestions have already been triggered, a prompt will
appear asking the user if he/she wants to see advice on improving his/her design. This advice can come from many
different sources, as seen in Table 1. Each advice has different triggers and is shown in a different way. The following
paragraphs describe how each of the different suggestions are generated and shown.

The Engineer suggestions work in a similar fashion to what was already shown as part of the Aggregator feedback:
each design is analyzed and a rule-based program is run to check whether a set of rules of thumb are being satisfied or
violated by the current design. The trigger for generating these suggestions is when the user makes some changes to the
architecture in the Design Builder space. For now, that is fixed to 3 changes under 60s before triggering. When the role
is triggered it activates the rule-based system and returns all the advice, which is shown as a text list.

In the case of the Historian, the role compares the current design with past missions and assesses how similar the
design is to past missions. If it finds a significant similarity, the role returns a sentence explaining the similarities
between the current design and that of similar historic missions, while if there is no similar mission in the database,
the Historian will advise the user to be cautious, as this might be an untested and thus risky design for a satellite
constellation. For example, most radar altimeters have been flown on non-SSO orbits, in order to better model the
diurnal cycle. Thus, if the user puts a radar altimeter in an SSO, the Historian will flag this decision as “rare” and
warn the user that there might be a reason for the absence of missions with that feature. The trigger for generation is,
again, 3 changes in the current design under 60s by the user, which activates the comparison between the current design
and past missions. The suggestions from this comparison are shown to the user as a list of similar missions for each
spacecraft/orbit, as well as another list with similar constellations.

The Analyst is a little different compared to the other roles acting on the Live Recommender System. To begin
with, instead of just acting on a trigger, it is continuously running in the background. Every 30 seconds, it finds sets of
driving features from designs with Pareto ranking up to 3 using classification association rule mining. The metrics on
which these features are chosen are specificity (a.k.a. recall) and coverage (a.k.a. precision). Specificity is the fraction
of designs with the feature that are in the desirable set (e.g., Pareto ranking up to 3). Coverage, on the other hand,
measures the fraction of designs inside the desirable set that have the feature. Thus, a good feature is one with good
specificity and coverage. Those metrics are usually at odds, so a trade-off appears. Then, four of those extracted features

∗https://redis.io/
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are selected using the Minimum Redundancy Maximum Relevance (mRMR) [28] algorithm. Once the four features
are chosen, they are suggested to the user by showing a list with a check or a cross next to each feature depending on
whether the feature is present on the current design or not. If the user hovers over each of the missing features in the list,
a set of “phantom” instruments will tentatively appear and some existing instruments will tentatively disappear in the
design builder to create a configuration that is as similar as possible to the current one and has the feature. Also, when
hovering over all of the features in the list, all designs that have these features will be highlighted in the trade-space plot
in a similar way to when the Analyst role is run in a reactive way.

The Aggregator role, as mentioned in Table 1, has been transformed into the Live Recommender System for the
proactive parts of Daphne.

4. Changes in the interface
There are four main changes in the Daphne user interface, which is shown in Figure 3.

Fig. 3 Daphne screenshot with a notification and all the settings for proactive Daphne

The first change is the blue information block. This new block is where all the notifications from proactive Daphne
appear. For example, if there are some new designs from the background search in the queue, or the Live Recommender
System is waiting to show its recommendations to the user, both of them will issue a notification which will be shown in
this message block. The user can then accept the suggestion, dismiss the notification, or dismiss it and ask to not be
shown that again.

Another change is on the left menu: a new array of settings related to the new functionalities has been added
there, including the background search, whether or not its results are immediately shown, the exploration assistant (or
Diversifier), and the Live Recommender System. The user can manually activate or deactivate each feature depending
on his/her needs.

A third change is on the scatter plot, where the deep blue dots now represent the new architectures found by the
background search, thus differentiating them from the initial architectures in the dataset. The blue dots turn to the same
color as the rest after 5 minutes, to make sure that only the newest architectures are highlighted at any given point.

Finally, the last change is in the Design Builder, where all the suggestions will pop up as described in past sections.
They appear in different ways, including text lists on the right side, names of similar missions next to each orbit or a
checklist with missing features for the current design.
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III. Use Case Scenario: A Constellation for Measuring Soil Moisture
The user is tasked with architecting an Earth Observation Satellite System with the objective of measuring Soil

Moisture at the surface. Specifically, the goal is to find a partition of a set of 5 instruments to be assigned in different
satellites (all in one satellite, each in its own satellite, or anything in between) so as to maximize satisfaction of a
set of 176 measurement objectives related to soil moisture and other secondary measures which are closely tied to
it. Measurement objectives are associated with different stakeholders, which include: Weather, Climate, Ecosystems,
Water, and Applications. Assuming a classical set partitioning problem with no additional decisions, the number of
partitions of a set with 5 elements is only 52, so brute force (full factorial enumeration) could be used instead of a
genetic algorithm. In this problem, though, each subset in the partition (a satellite) needs to be assigned to an orbit, thus
increasing the dimensionality of the problem. To keep the problem manageable, we limited the possible orbits to 5.
With this formulation, the number of possible architectures is 12880. The orbits and the instruments being used are
described in Table 2 and Table 3.

Instrument Description
VIIRS Visible and Infrared Atmospheric Sounder
CMIS Conically Scanning Microwave Radiometer (Imaging and Sounding)
SMAP_RAD L-band Synthetic Aperture Radar
SMAP_MWR L-band Radiometer
BIOMASS P-band Synthetic Aperture Radar

Table 2 Candidate instruments

Orbit Description
LEO-600-polar LEO with 90deg inclination at 600km altitude
SSO-600-AM SSO with morning LTAN at 600km altitude
SSO-600-DD SSO with dawn-dusk LTAN at 600km altitude
SSO-800-AM SSO with morning LTAN at 800km altitude
SSO-800-DD SSO with dawn-dusk LTAN at 800km altitude

Table 3 Candidate orbits. SSO = Sun-Synchronous Orbit. LTAN = Local Time of the Ascending Node

In this Demo Scenario, the user is exploring the set of candidate architectures described above and is considering
architectures within a broad range of lifecycle costs, between $1000M and $5000M. The goal of the user is to find the
best possible set of architectures in the shortest amount of time. For example, we can assume that the user has 2 hours to
work on this task.

Daphne starts by generating a random dataset of around 500 architectures satisfying all constraints, in order to
warm-start the search. With the new proactive functionality, the background search also starts working at the same point.

After 1 or 2 minutes, which is what it usually takes for the background search to find 10 new designs which improve
the initial non-dominated set at the beginning of the search (it takes longer as the search progresses), a message will
appear for the user asking if he/she wants to see those new solutions. If the user agrees, the background search results
will be shown in real time in the scatter plot from now on.

The user then goes back to work on an architecture close to the minimum required cost, which perhaps simply flies
the L-band radar in a a 600km morning SSO and CMIS in a 600km polar orbit ($1,059M and 0.22 science score).
After some time thinking, he may ask Daphne how to improve that design. Daphne, through its Aggregator role, may
come back with a suggestion to move the radar to a dawn-dusk orbit to reduce power consumption and thus cost, and
to replace the CMIS instrument with the L-band radiometer in the same orbit to improve sensitivity. Note that these
changes are likely to make some improvements to the architecture ($758M for a science score of 0.34), but they will also
likely degrade other aspects of the architecture, such as temporal resolution in this case - since we go from 2 orbits to
1 orbit. Here is where the interaction with the user is critical, since they can understand those effects and weigh the
relative desirability of the architectures including aspects that are not necessarily captured in the model. At this point,
the user may try some of the suggested changes. After some time, the Live Recommender System will have accumulated
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enough feedback that another message will pop out asking the user if he/she wants to see all the suggestions in real time.
Again, in case the user agrees to it, all these suggestions will start showing in the Design Builder block in the different
ways we have already described.

After some time of the user working with the dataset, chances are that some regions in the space have been more
extensively searched than others, so the Diversifier will send a message, suggesting the user to start looking in a relatively
unexplored area of the scatter plot. For example, it might recommend to start searching designs in the $4000M range, as
there might be fewer designs in that area compared to the rest. This helps the user in the given task of finding designs
for a range of lifecycle costs.

Thanks to a combination of these 3 new tools, the user has, on the one side, an automatic way of finding better
architectures which runs without any intervention, and he/she can refine those results with a live system that keeps
suggesting improvements. On the other side, if he/she focuses too much on improving a small part of the dataset, the
Diversifier helps shuffle the focus to more undersearched areas, thus increasing the probability of finding a better set of
solutions.

IV. Conclusion and Future Work
In this paper, we have explained the first steps of turning Daphne into a proactive virtual assistant from its reactive

origins by adding a new way of communication between the Daphne Brain and the user and adding new features which
use this new channel. These features include a background design space search algorithm, a program that tries to get the
user to explore more of the dataset, and a live recommender system that gives advice to the user in real time to guide
them towards better designs faster.

We have described how all the already existing pieces have changed to adapt to this new system as well as how the
new components have been programmed and integrated into the general system. We also explained how we are making
Daphne more general and thus more useful for more users and tasks, and a specific use case illustrating the utility of the
changes implemented.

In future work, we plan to run an experiment with human subjects, in which we will compare the performance of the
same subject when using the reactive Daphne versus the proactive Daphne. At the same time, we will ask the subjects to
assess the usability of both systems and their emotions when using them, as it has been shown that emotions play an
important role in software adoption and user performance [29].

Apart from the human subjects experiment, we plan on improving the new proactive features. For the design space
search, more advanced search algorithms can be utilized that facilitate the integration of expert knowledge [30]. For the
recommender systems, suggestions coming from the Analyst and the Historian are just scratching the surface of what is
possible to do with both roles. For example, instead of using specific instruments to create features for the Analyst,
higher level variables can also be used (e.g., High-Power Instruments, Visible and Near Infrared Instruments), which can
lead to higher predictive power for features of a given length. Following cognitive style theories [31], these suggestions
could also be provided in a more visual way compared to just lists of text, for example by coloring instruments according
to a certain scale or suggesting instruments moves between orbits by tentatively showing the instrument in the new orbit
in gray and having the user click on the new position to confirm the change. Regarding the Diversifier, instead of just
taking into account distance in the objective space, it could also account for distance in the decision space, i.e., look
for architectures with decision values which have not been explored enough. Similarly, one can look for diversity in
the feature space, meaning the user could be directed to explore architectures containing features which have not been
explored.

We will also study frameworks and algorithms for anticipating user goals and intentions and future actions.
Daphne continues to be available online at https://www.selva-research.com/daphne, and its code is open,

licensed under the MIT license and available at https://www.github.com/seakers.
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